

Tetrahedron Letters 43 (2002) 2083-2085

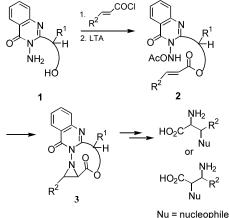
TETRAHEDRON LETTERS

Completely diastereoselective aziridination of α , β -unsaturated acids via intramolecular reaction of 3-acetoxyaminoquinazolin-4(3*H*)-ones

Robert S. Atkinson,^{a,*} Richard D. Draycott,^a David J. Hirst,^a Martin J. Parratt^b and Tony M. Raynham^b

^aDepartment of Chemistry, Leicester University, Leicester LE1 7RH, UK ^bRoche Discovery Welwyn, 40 Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AY, UK

Received 19 November 2001; revised 10 January 2002; accepted 18 January 2002


Abstract—(R)-3-Amino-2-[1-(2-hydroxyethoxy)ethyl]quinazolin-4(3H)-one 10 was prepared in 62% yield without the need for chromatography and O-cinnamoylated; reaction with lead tetra-acetate gave aziridine 12 as a single diastereoisomer in quantitative yield which was converted into the β -amino acid ester 15 corresponding to overall enantioselective addition of ammonia to the double bond of cinnamic acid. © 2002 Elsevier Science Ltd. All rights reserved.

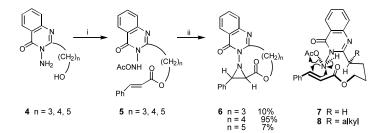
The reaction in Scheme 1 was envisaged as a means by which α,β -unsaturated acids could be converted into single enantiomers of α - or β -amino acid derivatives by the use of 3-aminoquinazolinone 1 as a chiral auxiliary/ appended pro-reagent.¹

For the conversion of 3-acetoxyaminoquinazolinone (QNHOAc) **2** into a single diastereoisomer of lactone **3** in Scheme 1, the chiral centre in the tether must control the face of the α,β -unsaturated ester which is aziridinated.

Esters have previously been used as fissionable groups in tethers, e.g. in intramolecular Diels–Alder reactions.² When the tether including the ester comprises a limited number of atom links (\leq 5) reaction is only feasible from the less stable³ s-*trans* conformation (Scheme 2).

However, whereas a Diels–Alder reaction can if necessary be heated, in the case of QNHOAc 2, its thermal instability above $0^{\circ}C^{4}$ precludes heating and means that the s-*cis*-conformational preference of the ester must be accommodated by increasing the number of connecting atoms in the remainder of the tether to allow the transition state (TS[#]) geometry of the aziridination to become accessible. In order to determine the optimum number of additional atoms required in the tether, a series of 2-(ω -hydroxyalkyl)-3-aminoquinazolinones **4** was prepared with n=3, 4 and 5 and each was reacted with cin-

LTA = lead tetra-acetate


Scheme 1.

Scheme 2.

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: \$0040-4039(02)00136-3

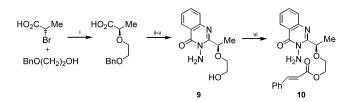
^{*} Corresponding author. Fax: (+44)116-252-3789; e-mail: vow@ le.ac.uk

Scheme 3. Reagents and conditions: (i) PhCH=CHCOCl (1.1 equiv.), pyridine, $CH_2Cl_2 - 40 \rightarrow 0^{\circ}C$; 5 n=3, 48%; n=4, 54%; n=5, 56%; (ii) LTA (1.1 equiv.), HMDS (2 equiv.), CH_2Cl_2 .

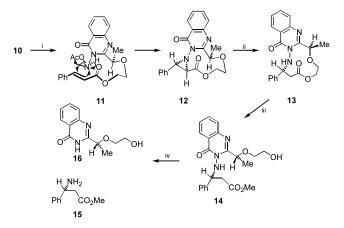
namoyl chloride in the presence of pyridine. In each case, only *O*-acylation occurred, the nucleophilicity of the 3-amino group being greatly reduced by the electron-withdrawing Q-group. The corresponding *O*-cinnamoyl esters **5** were each oxidised with lead tetra-acetate in the presence of hexamethyldisilazane (HMDS)⁵ and the isolated yields of aziridines **6** determined (Scheme 3).

That ester 5, n=4 gives the highest yield of aziridine is accounted for by the presumed $TS^{\#}$ 7 in which the conformation of the tether is assumed to resemble closely that in the product aziridine 6, n=4. This TS[#] model 7 reveals the following favourable features (i) an orthogonal approach of C=C and Q-N bonds contained in almost parallel planes as required for the aziridination,⁴ (ii) an s-cis (see above) and planar ester functionality, (iii) a staggered conformation for the tetramethylene segment of the tether forming a chairlike motif and (iv) overlap of the ester carbonyl oxygen with the Q-group, a factor believed to be mandatory for successful intermolecular aziridination of α,β -unsaturated esters with QNHOAc compounds.⁶ In addition, this model strongly suggested that a substituent R on the carbon linking the tether to the Q-group would greatly prefer an 'equatorial' location on the chair motif as shown in $TS^{\#}$ 8, i.e. would direct aziridination onto the face of the α,β -unsaturated ester indicated with 1,7-chirality induction (these aziridinations are syn-stereospecific).

For ease of incorporation of the chiral centre, we synthesised crystalline 3-aminoquinazolinone (QNH₂) **9** which includes an ether linkage in the tether by the route shown in Scheme 4 in an overall yield of 62% without the need for chromatography at any stage.


The enantiopurity of QNH_2 **9** was confirmed by derivatisation with (*R*)-myrtenal and comparison of the NMR spectrum of the product with the diastereoisomer mixture using racemic QNH_2 **9**.

O-Cinnamoylation of QNH_2 **9** and then addition of ester **10** and LTA alternately in small portions to a stirred dichloromethane solution gave an almost quantitative yield of aziridine **12** as a single crystalline diastereoisomer via, it is assumed, $TS^{\#}$ **11** (Scheme 5).


Reduction of aziridine **12** with samarium(II) iodide⁷ took place regiospecifically to give crystalline lactone **13**

(84%) which was ring-opened quantitatively to ester 14 with sodium methoxide in methanol. Further reaction with samarium(II) iodide in the presence of β -dimethylamino ethanol gave clean reduction to a mixture of β -amino ester 15 and QNH₂ 16 which was separated by chromatography.⁸ Comparison of the specific rotation of this amino ester [α]_D=21 (*c* 0.46, CHCl₃) with that in the literature⁹ {[α]_D=22.3 (*c* 1.99 CHCl₃)} shows that it is *R*-configured in accordance with TS[#] model 11.¹⁰

We have previously described the completely diastereoselective intermolecular aziridination of methyl acrylate and also of electron-available alkenes, e.g.

Scheme 4. Reagents and conditions: (i) NaH (2 equiv.), BnOCH₂CH₂OH, THF then (S)-MeCHBrCO₂H (89%); (ii) NaOMe (1 equiv.), MeOH \rightarrow sodium salt, (COCl)₂, pyridine, benzene; (iii) methyl anthranilate (2.2 equiv.), ether (99%); (iv) Pd/C, H₂, AcOH (91%); (v) NH₂NH₂, EtOH, 130°C, 4 h (78%); (vi) PhCH=CHCOCl (1.2 equiv.), pyridine, CH₂Cl₂, -20°C \rightarrow rt (62%; 91% based on recovered **9**).

Scheme 5. Reagents and conditions: (i) LTA (1.1 equiv.), HMDS (2 equiv.), CH_2Cl_2 (>95%); (ii) SmI₂, THF, Bu'OH (84%); (iii) MeOH, MeONa (>95%); (iv) SmI₂, THF, Me₂N(CH₂)₂OH (40%).

butadiene and styrene with an enantiopure QNHOAc compound and the conversion in some cases into Q-free chirons¹¹ but the method is less diastereoselective with more substituted alkenes. The present method is potentially applicable to a wide variety of α , β -unsaturated acids and is likely to be tolerant of additional substituents on the α - and on the β -positions.¹² Regiocomplementary ring-opening of the intramolecular aziridination products, e.g. **12** can be anticipated by appropriate choice of reagents.¹³

Acknowledgements

We thank the EPSRC and Roche for support.

References

- For previous intramolecular aziridinations of 3-acetoxyaminoquinazolinones, some of which were thought at the time to involve (3,4-dihydro-4-oxoquinazolin-3yl)nitrenes, see: (a) Atkinson, R. S.; Skinner, K. Chem. Commun. 1983, 22–23; (b) Atkinson, R. S.; Malpass, J. R.; Skinner, K. L.; Woodthorpe, K. L. J. Chem. Soc., Perkin Trans. 1 1984, 1905–1912; (c) Atkinson, R. S.; Grimshire, M. J. J. Chem. Soc., Perkin Trans. 1 1987, 1135–1145; (d) Atkinson, R. S.; Williams, P. J. J. Chem. Soc., Perkin Trans. 2 1996, 205–211.
- (a) Alexakis, A.; Jachiet, D.; Toupet, L. *Tetrahedron* 1989, 45, 6203–6210; (b) Bear, B. R.; Sparks, S. M.; Shea, K. J. *Angew. Chem., Int. Ed.* 2001, 40, 820–849; (c) Gauthier, D. R.; Zandi, K. S.; Shea, K. J. *Tetrahedron* 1998, 54, 2289–2337; (d) Craig, D. *Stereoselective Synthe*-

sis (Houben-Weyl); Thieme: Stuttgart, 1996; Vol. 5, pp. 2872–2904.

- 3. Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry; Pergamon: Oxford, 1993; Chapter 3.
- 4. For a review of aziridination of alkenes using QNHOAc compounds, see: Atkinson, R. S. *Tetrahedron* **1999**, *55*, 1519–1559.
- Atkinson, R. S.; Barker, E.; Ulukanli, S. J. Chem. Soc., Perkin Trans. 1 1998, 583–589.
- Overlap of the ester carbonyl oxygen with the C=O or C=N of the Q-ring can occur. See: Atkinson, R. S.; Ulukanli, S. J. Chem. Soc., Perkin Trans. 2 1999, 771– 776.
- Molander, G. A.; Stengel, P. J. J. Org. Chem. 1995, 60, 6660–6661.
- 8. The isolated yield of β -amino ester 15 was 40% but after significant loss on chromatography.
- Jiang, J.; Schumacher, K. M.; Joullié, M. M.; Davis, F. A.; Reddy, R. E. *Tetrahedron Lett.* 1994, 35, 2121–2124.
- 10. The ester of a racemic alcohol related to **9** (Ph replacing Me) with *E*-2,3-dimethylacryloyl chloride (tiglyl chloride) similarly underwent intramolecular aziridination with LTA and an X-ray structure determination of the product shows it to have the same relative configuration as aziridine **12** but a boat motif for the (Q)C–O(CH₂)₂O segment of the ten-membered ring.
- (a) Atkinson, R. S.; Ayscough, A. P.; Gattrell, W. T.; Raynham, T. M. J. Chem. Soc., Perkin Trans. 1 2000, 3096–3106; (b) Atkinson, R. S.; Meades, C. K. J. Chem. Soc., Perkin Trans. 1 2001, 1518–1527.
- 12. Intermolecular aziridination of methyl methacrylate according to Ref. 11a gave a 6:1 ratio of diastereoisomers in 45% yield.
- 13. Ring-opening of aziridine **12** with acid, e.g. TFA, takes place at the benzylic position.